An Orthogonal Transformation Algorithm for GPS Positioning
نویسندگان
چکیده
The Global Positioning System (GPS) is a satellite based navigation system. GPS satellites transmit signals that allow one to determine the location of GPS receivers. In GPS, a typical technique for kinematic position estimation is differential positioning where two receivers are used: one receiver is stationary and its exact position is known, and the other is roving and its position is to be estimated. We describe the physical situation and derive the mathematical model based on the difference of the so-called carrier phase measurements at the stationary and roving receivers. We then present a recursive least squares approach for position estimation. We take full account of the structure of the problem to make our algorithm efficient, and use orthogonal transformations to ensure numerical reliability of the algorithm. Simulation results are presented to demonstrate the performance of the algorithm. A comparison with the van Graas and Lee positioning algorithm [Navigation, Journal of the Institute of Navigation, 42 (1995), pp. 605–618] is given. Our algorithm is seen to be both efficient and accurate, but an additional contribution of this approach is that some of the drawbacks of double differencing are avoided, and yet the vector of double differenced integer ambiguities is still available and can be used to fix the integer ambiguities and handle satellite rising and setting.
منابع مشابه
Code and Carrier Phase Based Short Baseline GPS Positioning: Computational Aspects∗
A recursive least squares algorithm is presented for short baseline GPS positioning using both carrier phase and code measurements. We take advantage of the structure of the problem to make the algorithm computationally efficient and use orthogonal transformations to ensure that the algorithm is numerically reliable. Details are given for computing position estimates and error covariance matric...
متن کاملAn Algorithm for Combined Code and Carrier Phase Based Gps Positioning∗
The Global Positioning System (GPS) is a satellite based navigation system. GPS satellites transmit signals that allow one to quite accurately estimate the location of GPS receivers. In GPS a typical technique for kinematic position estimation is relative positioning where two receivers are used, one receiver is stationary and its exact position is known, the other is roving and its position is...
متن کاملImproving the Reliability of GPS and GLONASS Navigation Solution in Urban Canyons using a Tuned Kalman Filter
Abstract: Urban canyon is categorized as hard environment for positioning of a dynamic vehicle due to low number and also bad configuration of in-view satellites. In this paper, a tuning procedure is proposed to adjust the important factors in Kalman Filter (KF) using Genetic Algorithm (GA). The authors tested the algorithm on a dynamic vehicle in an urban canyon with hard condition and compare...
متن کاملCompensation of Doppler Effect in Direct Acquisition of Global Positioning System using Segmented Zero Padding
Because of the very high chip rate of global positioning system (GPS), P-code acquisition at GPS receiver will be challenging. A variety of methods for increasing the probability of detection and reducing the average time of acquisition have been provided, among which the method of Zero Padding (ZP) is the most essential and the most widely used. The method using the Fast Fourier Transform (FFT...
متن کامل3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses
In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2003